4 Random-effects Model

# fit a random-effects model
res <- rma(yi, vi, data=dat)
res
## 
## Random-Effects Model (k = 51; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0179 (SE = 0.0050)
## tau (square root of estimated tau^2 value):      0.1338
## I^2 (total heterogeneity / total variability):   78.33%
## H^2 (total variability / sampling variability):  4.61
## 
## Test for Heterogeneity:
## Q(df = 50) = 188.5421, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   0.0978  0.0224  4.3635  <.0001  0.0539  0.1417  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1