7 Subgroups Analysis

# subgrouping
res.tot <- rma(yi, vi, data=dat, subset=Branch=="Total")
res.per <- rma(yi, vi, data=dat, subset=Branch=="Perception")
res.fac <- rma(yi, vi, data=dat, subset=Branch=="Facilitation")
res.und <- rma(yi, vi, data=dat, subset=Branch=="Understanding")
res.man <- rma(yi, vi, data=dat, subset=Branch=="Management")

# in the subgrouping approach, we let tau^2 to differ across subgroups 
sav <- sapply(list(res.tot,res.per,res.fac, res.und, res.man), function(x) c(estimate=x$beta, tau2=x$tau2, k=x$k))
colnames(sav) <- c("res.tot", "res.per", "res.fac", "res.und", "res.man")
round(sav, digits=4)
##          res.tot res.per res.fac res.und res.man
## estimate  0.0533  0.0655  0.0633 -0.0071  0.2386
## tau2      0.0111  0.0000  0.0031  0.0204  0.0115
## k        11.0000  8.0000  9.0000  9.0000 14.0000
res.man
## 
## Random-Effects Model (k = 14; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0115 (SE = 0.0068)
## tau (square root of estimated tau^2 value):      0.1071
## I^2 (total heterogeneity / total variability):   71.30%
## H^2 (total variability / sampling variability):  3.48
## 
## Test for Heterogeneity:
## Q(df = 13) = 41.8528, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   0.2386  0.0354  6.7409  <.0001  0.1692  0.3080  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
res.per
## 
## Random-Effects Model (k = 8; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.0000 (SE = 0.0023)
## tau (square root of estimated tau^2 value):      0.0008
## I^2 (total heterogeneity / total variability):   0.01%
## H^2 (total variability / sampling variability):  1.00
## 
## Test for Heterogeneity:
## Q(df = 7) = 8.1280, p-val = 0.3214
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   0.0655  0.0250  2.6243  0.0087  0.0166  0.1144  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
forest(res.per, header=TRUE, addpred=TRUE, slab = dat$Author)

rma(yi, vi, data=dat, method= "FE", subset=Branch=="Perception")
## 
## Fixed-Effects Model (k = 8)
## 
## I^2 (total heterogeneity / total variability):   13.88%
## H^2 (total variability / sampling variability):  1.16
## 
## Test for Heterogeneity:
## Q(df = 7) = 8.1280, p-val = 0.3214
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   0.0655  0.0250  2.6248  0.0087  0.0166  0.1144  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1